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Information Conveyed Through Brain-Control:
Cursor Versus Robot
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Abstract—Microwire electrode arrays were implanted in the motor and
premotor cortical areas of rhesus macaques. The recorded activity was used
to control the three-dimensional movements of a virtual cursor and of a
robotic arm in real time. The goal was to move the cursor or robot to one
of eight targets. Average information conveyed about the intended target
was calculated from the observed trajectories at 30-ms intervals throughout
the movements. Most of the information about intended target was con-
veyed within the first second of the movement. For the brain-controlled
cursor, the instantaneous information transmission rate was at its max-
imum at the beginning of each movement (averaged 4.8 to 5.5 bits/s de-
pending on the calculation method used). However, this instantaneous rate
quickly slowed down as the movement progressed and additional informa-
tion became redundant. Information was conveyed more slowly through the
brain-controlled robot due to the dynamics and noise of the robot system.
The brain-controlled cursor data was also used to demonstrate a method
for optimizing information transmission rate in the case where repeated
cursor movements are used to make long strings of sequential choices such
as in a typing task.

Index Terms—Brain–computer interface (BCI), brain–machine interface
(BMI), information rates, information theory, neural prosthesis, neurocon-
trollers, prosthetics, robots, virtual reality.

I. INTRODUCTION

Many types of brain–computer interfaces (BCIs) have been devel-
oped for assisting the disabled [1]–[7]. Possible functions include
choosing letters to spell words [1]–[4], moving a cursor to select from
a menu, and mentally directing the motion of a robot, a wheelchair, or
a neuroprosthetic limb [5], [6]. Such diversity of output tasks makes
it difficult to compare the performance of one BCI with another.
However, letter selection, movement direction, and menu choice can
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all be quantified into bits—the number of binary digits—or yes-or-no
questions needed to specify the action.

Here, we measured the information conveyed with a BCI that uses
the firing rates of a population of single cells and multicell clusters
recorded from microwire electrode arrays implanted in the motor and
premotor cortical areas of rhesus macaques [7]. We compared the in-
formation transferred when the cortical signals were used to control a
three-dimensional (3-D) virtual cursor versus a six-degree-of-freedom
robotic arm (ZeroZebra). In both cases, the task was a 3-D center-out
task where the brain-controlled cursor or robot had to move from a
center start position to targets that appeared at one of eight corner po-
sitions of an imaginary cube. In this analysis, we only evaluated the in-
formation conveyed about the intended target and not about the details
of the movement trajectory itself. Information about the intended target
was calculated at the output end of each system (i.e., the cursor move-
ment and the robot movement) as opposed to the input end (i.e., the
information imbedded in the cortical activity itself). Although infor-
mation may be encoded in many aspects of the cortical activity, some
of that information will be lost when using simplistic algorithms to
translate cortical activity into 3-D movements. Additional information
will be lost when the calculated 3-D movements are further translated
into physical movements due to variability and noise in the physical
system. Here, we calculate the information about intended target con-
veyed through the brain-controlled cursor and robot to compare the
functional information transmission rate through each of these com-
plete systems.

Georgopoulos and Massey [8] have shown that more information
about intended target direction can be obtained from neural activity of
the motor cortex than from the actual arm movement itself during the
initial part of the movement. This suggests that information is natu-
rally lost through the motor system during volitional movement. This
also suggests that, if enough motor cortex cells are used, controlling
a computer cursor directly from the motor cortex may produce more
accurate movements than controlling a cursor by physically moving a
mouse. In the Georgopoulos study, motor cortex information was cal-
culated by predicting intended targets from a population vector [9] that
combined the simulated activity of up to 253 motor cortex cells. Their
results showed that the information conveyed by the population vector
exceeded that conveyed by arm movements once the number of cells
used in the population vector reach between 40 and 50. Their simu-
lated cell activity was modeled after cells which where recorded one at
a time using a movable electrode. These acute electrodes allowed them
to optimally place the electrode near each cell body and record large
well-isolated waveforms. The recording quality is likely to be lower in
chronic cortical implants where arrays of electrodes are fixed in place.
With chronic electrodes, the recorded cell waveforms are often poorly
isolated or too small in amplitude to be completely separated from the
system noise. Therefore, the number of recorded units needed to ex-
ceed the information conveyed with actual arm movements is likely
to by higher with chronic implants than what the Georgopoulos study
suggests. In our study, cursor and robot movements were controlled by
the activity of 39� 2 cortical units which consisted of a more typical
sampling of the quality of recordings seen in fixed chronic implants.

II. M ETHODS

In the first experiment, rhesus macaques controlled the 3-D move-
ments of a cursor in a virtual workspace while both arms were
restrained. The animals’ cortical activity was translated into cursor
movements in real time. Full details of the experimental design and
cortical decoding algorithm have been reported elsewhere [7].

1534-4320/03$17.00 © 2003 IEEE
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Fig. 1. Examples of brain-controlled cursor trajectories. Trajectories to all
eight 3-D targets are plotted in two groups of four for easier viewing. Corner
circles indicate target locations. Trajectory shading matches the shading of the
intended target. The three letters indicate the 3-D target position in the following
order: left-or-right, upper-or-lower, proximal-or-distal.

In a second experiment, a robot was added into the control loop. The
animal still viewed the task through the same virtual cursor interface.
However, instead of controlling the cursor directly from the brain ac-
tivity, the robot was controlled directly from the brain activity, and a
position sensor on the end of the robot determined the position of the
cursor in the monkey’s virtual workspace. The monkey did not see the
actual brain-controlled robot, but did see the robot’s movements via the
3-D virtual cursor.

These series of experiments were designed to evaluate the use of
cortical activity for directional control of an upper-limb neural pros-
thesis. Therefore, the task required that the subjects make trajectories
to each target and hold the cursor or robot at the target to get a reward.
Although this is appropriate for evaluating the naturalness of the hypo-
thetical prosthetic limb movement, these full trajectories resulted in the
transfer of redundant information about the intended targets. Enough
information was usually conveyed early on in the trajectory to deter-
mine the intended target well before reaching it. In this type of task,
with a limited number of discrete goals, a smart controller could pre-
dict the intended target early on in the movement and complete the
movement for the subject without the need for further information.

Fig. 1 demonstrates this point. Five minutes of brain-controlled
cursor trajectories to all eight targets are shown. In this example, all
intended targets could be predicted two-thirds of the way into the
movement because there was no overlap of the trajectory distributions
after that point. Therefore, three bits of information (which of the
eight possible targets) were transmitted in the first two-thirds of the
movement. The additional trajectory information would not provide
any more information about which target the subject was aiming for
(although it did provide qualitative information about the form of the
trajectories).

To evaluate the target-related information conveyed over the time
course of the movements, predictions of intended targets were made at
30-ms intervals along each trajectory recorded from 15 days of brain-
controlled cursor data and six days of robot data from one animal (about
15 min/day). At each time interval, the intended target was predicted
using two different methods. The first method assumed the closest
target was the intended goal. Therefore, classification boundaries were
equally spaced between neighboring targets. However, on some days,
trajectories to one or more targets showed a consistent curvature or
would consistently hit one side of a target over the other. Therefore,
shifting the classification boundaries to reflect these consistent devia-
tions should result in greater prediction accuracy. In the second method,
target predictions were made by first defining a “typical” movement

path for each target, then placing the classification boundaries equal
distance between these paths. These “typical” movement paths were
calculated as the median of each day’s trajectories to each particular
target. However, in order to avoid the unfair advantage of including the
trajectory that is being classified in the calculation of its own classifica-
tion boundaries, these boundaries were recalculated for each trajectory
with that particular trajectory eliminated from the boundary calcula-
tion.

Information theory [10], [11] was used to measure average informa-
tion conveyed each day at various stages of the movement. For a system
with eight possible discrete targets, the average information conveyed
about the target can be calculated as

I =

8

Tp=1

P (Tp) (S [Ta]� S [TajTp]) (1)

whereI is average information conveyed about the intended target,
P (Tp) is the probability of predicting targetTp, S[Ta] is the entropy
in the distribution of actual targets, andS[TajTp] is the entropy of the
conditional distribution of the actual targets,Ta, given the predicted
target wasTp.

The two entropy terms are defined as

S [Ta] =�

8

Ta=1

P (Ta) log 2 (P (Ta)) and (2)

S [TajTp] =�

8

Ta=1

P (TajTp) log 2 (P (TajTp)): (3)

Here,P (Ta) is the probability of the actual target beingTa. In the
case where all eight targets are equally likely, this would simply be
1/8, andS[Ta] would equal three bits.P (TajTp) is the conditional
probability that the actual target wasTa given the target predicted by
the observed trajectory wasTp.

This form of the information equation is a weighted average of
what is learned about the actual target when each of the eight targets
is predicted from the observed trajectories. The entropy termS[Ta]
measures the number of bits needed to describe the full range of
the possible intended targetsTa. The termS[TajTp] measures the
number of bits needed to describe the more limited range of possible
values ofTa given that targetTp is predicted. The difference between
the two is the information gained aboutTa by the prediction of target
Tp. The information gain from predicting each specific targetTp

is then weighted by the probability of actually getting a prediction
of Tp. These values are then summed across all possible targets to
get the average information conveyed about the intended targets.

Finally, in addition to movements to the eight corners of a cube, both
the brain-controlled cursor and robot were used in a task that required
movements from the center to random target positions throughout the
workspace, and then back to the center start position. This was done
to verify that the control algorithm, which was optimized for the eight-
target center-out task, would also allow the subject to make movements
to all parts of the workspace and make 180� real-time changes in move-
ment direction.

All experiments were approved and monitored by Arizona State Uni-
versity’s Institutional Animal Care and Use Committee. The guidelines
put forth by the Association for Assessment and Accreditation of Labo-
ratory Animal Care (AAALAC) and the Society for Neuroscience were
followed.

III. RESULTS

Fig. 2 shows the mean and standard deviation (std) across days of
the average information conveyed by the brain-controlled cursor and
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Fig. 2. Average information conveyed about intended target at different stages
of the movement. Dark-gray lines (mean) and light-gray areas (std) are from
cursor movements (15 days). Black lines (mean) and hatched areas (std) are
from robot movements (6 days). Information calculations used classification
boundaries based on minimum distance to (a) ’typical’ trajectories or to (b) the
targets.

robot trajectories at successive time intervals within the movement. The
dark-gray lines and light-gray areas reflect information conveyed by the
brain-controlled cursor position. The black lines and hatched areas re-
flect information conveyed by the brain-controlled robot position. For
both the robot and cursor movements, using the classification bound-
aries based on “typical” trajectories [Fig. 2(a)] resulted in a slightly
faster gain of information than using classification boundaries evenly
spaced between the targets [Fig. 2(b)].

In both the robot and cursor tasks, the total information gained per
movement began to saturate around 1–1.5 s into the movement. This
demonstrates that most of the information about the intended target
was conveyed early on in the movements. Therefore, most informa-
tion in the later part of each trajectory was redundant and did not pro-
vide new information. Each day’s average information per movement
seldom reached the full 3 b needed to specify which of the eight targets
the animal was trying to hit. This is because not all trajectories went
to their intended targets. Periodically, the cursor or robot would tend
to wander randomly about the workspace. This was most likely due to
the animal’s occasional inattention to the task since the errors tended to
come in blocks and did not show any particular relation to the targets.
These blocks were often associated with distracting noises outside the
experiment room and/or the animal looking way from the screen. If the
target was not hit within 3 s in the cursor task or 4.5 s in the robot task,
the cursor or robot would be returned back to the center start position
and the next target would appear. The daily average percentage of tar-
gets hit was 83� 6% in the cursor task and92� 4% in the robot task.

For the brain-controlled cursor, the highest information transmission
rate, (i.e., the slope ofI(t)), occurred in the earliest part of the cursor
movement. The information gained at this stage was about 1.5 b in
0.275 s (5.5 b/s) when using classification boundaries based on typ-
ical trajectories, or 1.5 b in 0.31 s (4.8 b/s) when using classification
boundaries based on target distance. The brain-controlled robot had
a fairly irregular information transmission rate at the beginning of the
movement, but achieved an information transmission rate similar to the
cursor once the movement got underway.

In the final tests, where the subject had to move from the center to
random 3-D target positions and then return to the center target, the
animal was equally successful hitting the new random target positions
as it had been hitting the eight well-practiced targets. In addition, the
animal readily changed movement directions to return the cursor or
robot to the center after hitting an outer target. However, there were
qualitative differences in the round-trip trajectories of the cursor versus

Fig. 3. Examples of robot and cursor trajectories going from the center to the
target and back to the center. Light-gray dots indicate when the outer target was
hit. Dark-gray dots show when the center target was hit on the return path.

the robot. Fig. 3 shows examples of these trajectories. The light-gray
dots indicate when an outer target was hit. The dark-gray dots indicate
when the center target was hit on the return path. Dots are 30 ms apart
in time. The robot moved more slowly than the cursor and was allowed
more time to complete each movement.

IV. DISCUSSION ANDCONCLUSION

In the center-out task, the goal of each movement was simply to
get to one of eight possible targets. Reaching the targets could have
represented selecting letters or groups of letters in a communication
task, selecting options from a menu of environmental controls,
or choosing between several predefined hand configurations for
controlling stimulation of a paralyzed limb [12]. In this analysis, we
were only looking at how much information was transmitted about the
intended target. Therefore, the total information could not exceed 3 b
because there were only eight targets. However, the initial information
transmission rate was 4.8–5.5 b/s for the brain-controlled cursor.
It may be possible for a subject to work at this higher information
transfer rate in a free-form drawing task which is not defined by a
preset number of goals. By identifying this potential information
transmission rate and using Fitts’ Law [13], one could determine the
gain of the system needed to produce the desired accuracy level in
free-form brain-controlled movements.

In most BCIs, cursor movement is used to choose between a fixed
number of discrete choices. As was shown here, redundant information
may be produced if the cursor goal can be predicted fairly accurately
before the end of each movement. In BCI tasks where long sequences
of selections are made in a row, such as selecting letters in a typing task,
shortening duration to minimize redundant information should increase
the net information transferred over a longer fixed time period. Shorter
duration will allow more selections to be made in a given time period.
However, the proportion of those selections that are correct will often
also be reduced. In the typing example, cutting movement duration in
half could result in typing a two-page letter with five typos in the same
amount of time as typing a one page letter with no typos. In spite of the
increased percentage of errors, the total information transmitted during
that time period will have increased.

A high information transfer rate needs to be balanced against the
functional “cost” of this higher percentage of errors (i.e., how impor-
tant is it to correct the errors and how much time does the correction
process take). If the task is to choose between menu options for putting
your brain-controlled car into park, reverse, neutral, or drive, then the
cost of an incorrect choice could be quite high. In that case, the move-
ment duration should be set long enough to guarantee that all infor-
mation is received before executing the action. However, if the task is
to shoot down alien invaders in a video game where laser direction is
under brain-control, then the extra number of incorrect selections (i.e.,
shooting empty space) at the higher information transmission rate may
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Fig. 4. Movement duration’s effect on (a) total information conveyed per
minute, (b) proportion of targets incorrectly selectedP (Error), (c) number
of selections made per minuteS, and (d) number of corrected selections made
per minuteN .

have little or no “cost” in the game. Using a shorter duration between
firings should still allow more “hits” per unit time giving the player the
best chance of saving the earth.

In communication BCIs, where letters or words are selected, the cost
of an incorrect selection is simply the extra time it takes to cancel the
selection and remake the selection. The process of optimizing move-
ment duration based on functional cost can be demonstrated using the
cursor data from the eight-choice task shown in Fig. 2(a) (gray line).
Suppose the selection task was to choose between seven choices or a
“cancel-previous-selection” option. Then the number ofcorrectselec-
tions per minuteNc would be approximately

Nc = S � (2S � P (Error)) (4)

where S is the number of selections per minute, andP (Error)
is the probability the selection would be incorrect.2SP (Error)
represents the number of movements per minute that did not produce
a correct selection. This term is comprised of all incorrect movements,
SP (Error), plus an equal number of “cancel-previous-selection”
movements. Note,Nc, P (Error), andS, as well as total information,
are all functions of movement duration. Fig. 4 plots these functions
using the cursor data from the experiment where the intended target
was predicted using classification boundaries based on “typical”
trajectories. Although the total information transferred is highest at
the shortest time durations [Fig. 4(a)], the proportion of incorrect
selections is also highest [Fig. 4(b)]. This can be reconciled by
understanding that the short duration results in a “noisier” signal,
but the speed at which it is sent [number of selections per minute,
Fig. 4(c)] more than makes up for the excess noise. The time “cost”
of removing the excess noise�2SP (Error) makes the shortest time
durations inefficient in spite of the higher information transmission
rate. Fig. 4(d) showsNc, the number of correct selections that could
be made per minute once the time to remove the errors is accounted
for. In this task, setting movement duration to 0.57 s would be the most
efficient way to produce an error-free sequence of choices. At this
duration, the subject could make about 47 correct choices per minute

with each choice being one of seven options. This is equivalent to
correctly typing 47 digits of a base-seven code per minute (equivalent
to about 2.2 b/s).

The method shown here is intended to illustrate how to choose a
movement duration that will maximize the practical function of a BCI.
However, the calculations in this example simply used the proportion
of targets missed at each duration. Average information conveyed was
never used. Note that the transmission rate ofcorrectedbits per second
was about 2.2 in this example, where as the actual information trans-
mission rate at the same movement duration was 2.1 b in 0.57 s or
3.7 b/s [see Fig. 2(a)]. This discrepancy can be accounted for by the
fact that some of the information is imbedded in the structure of erro-
neous target predictions. For example, when a target is selected in error,
the actual intended target is usually the one nearest the selected target.
This information will be lost unless a smart controller makes use of it
when correcting erroneous selections.

The 2.2 b/s value calculated previously does not include any addi-
tional time that may be needed between movements in order to transi-
tion between brain states. In the center-out experiments, we arbitrarily
set the intertrial-interval to 500 ms, and included a 200 ms delay be-
tween the time the target appeared and the time the cursor was al-
lowed to move. The targets were presented in random order, and this
delay ensured the subjects had time to perceive and react to the tar-
gets. Including this arbitrary 700-ms delay between selections reduces
the maximum corrected information transfer rate down from 2.2 to
1.1 b/s. However, additional studies need to be done to pinpoint the
true minimum time needed between movements in order to transition
between brain states in the case where the subject knows ahead of time
the choice sequence he or she is trying to make.

Less target information was conveyed through the brain-controlled
robot than cursor. Although the cursor went exactly where the cortical
decoding algorithm dictated, the robot, like virtually all physical sys-
tems, had its own dynamics and inherent noise. The robot accelerated
more slowly than the cursor resulting in smaller initial movements.
Jitter and vibration hindered target prediction most in the beginning
of the movements when the trajectories had not yet progressed very far
toward the targets. However, once the movement got under way, the
information transmission rate of the robot was similar to that of the
cursor.

Fig. 3 also demonstrates the effects of the robot’s dynamics on the
movements. With the brain-controlled cursor, the animal tended to
make relatively sharp 180� changes in direction when returning the
cursor to the center target. However, when controlling the robot, the
animal tended to make wider loops through the targets. The robot’s
mass and inertial properties may have made it difficult to perform
sharp changes in movement direction. However, the animal adjusted
to the physical properties of the robot system and was still able to
successfully perform the task. This demonstrates that brain-control
skills acquired in a computer-based environment can be applied to the
control of practical physical devices, although the control strategies
may need adjusting, and the quality of the performance may degrade
when information is lost with the physical system.
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Multimodal Neuroelectric Interface Development

Leonard J. Trejo, Kevin R. Wheeler, Charles C. Jorgensen,
Roman Rosipal, Sam T. Clanton, Bryan Matthews, Andrew D. Hibbs,

Robert Matthews, and Michael Krupka

Abstract—We are developing electromyographic and electroencephalo-
graphic methods, which draw control signals for human-computer
interfaces from the human nervous system. We have made progress in four
areas: 1) real-time pattern recognition algorithms for decoding sequences
of forearm muscle activity associated with control gestures; 2) signal-pro-
cessing strategies for computer interfaces using electroencephalogram
(EEG) signals; 3) a flexible computation framework for neuroelectric
interface research; and d) noncontact sensors, which measure electromyo-
gram or EEG signals without resistive contact to the body.

Index Terms—Brain-computer interfaces (BCI), electroencephalogram
(EEG), electric field sensors, electromyogram (EMG), neuroelectric
interfaces.

I. INTRODUCTION

We define a system that couples the human nervous system
electrically to a computer as a neuroelectric interface—a sensing and
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processing system that can use signals from the brain or from other
parts of the nervous system, such as peripheral nerves, to achieve
device control. We regard brain-computer interfaces (BCIs) [1] as
a subset of neuroelectric interfaces. Our current focus is on using
features from electroencephalograms (EEGs) and electromyograms
(EMGs) as control signals for various tasks, such as aircraft or
vehicle simulations and other graphic displays.

Our long-term goals are to: 1) develop new modes of interaction that
cooperate with existing modes such as keyboards or voice; 2) aug-
ment human-system interaction in wearable, virtual, and immersive
systems by increasing bandwidth and quickening the interface; and
3) enhance situational awareness by providing direct connections be-
tween the human nervous system and the systems to be controlled. Our
near-term goals include: 1) a signal acquisition and processing system
for real-time device control; 2) automatic EMG-based recognition and
tracking of human gestures; and c) feasibility testing of EEG-based
control methods.

In this paper, we will survey selected results and demonstrations
of EMG- and EEG-based neuroelectric interfaces. We will describe
an EMG-based flight stick, an EMG-based numeric keypad, an EEG-
based interface for smooth, continuous control of motion in a graphic
display, and comparison of algorithms for modeling the EEG patterns
associated with real and imagined hand motion. Finally, we will dis-
cuss recent developments of noncontact electric field sensors for EMG
and EEG recording.

Our approach is to describe a body of developmental research,
which is still in progress, and to indicate methods that have potential
for engineering development. Given the BCI focus of this Special
Issue, descriptions of purely EMG-based interfaces will be brief.
We will describe the EEG results and the new sensor developments
in more detail.

II. EMG INTERFACES

A. EMG-Based Flight Stick

In our first demonstration, a computer transformed EMG signals
recorded from four bipolar channels placed on the forearm of a sub-
ject into control signals for an aircraft simulator. Thus, the processed
EMG signals controlled an imaginary flight stick [2]. EMG samples
were processed in real time using a flexible signal-processing frame-
work developed in our laboratory. Our feature extraction procedures in-
cluded routines to filter out redundant and meaningless channels with
a mutual information metric [3]. The features were moving averages
of the EMG signal from overlapping windows, where the data within
a window are nearly stationary.1 Our model for mapping EMG signal
features to gestures uses mixtures of Gaussians within a hidden Markov
model context. We tested and validated this system with many trials
over a two-year period in three subjects, who flew and landed high-fi-
delity simulations of a Boeing F-15 Eagle or a Boeing 757-200 freighter
aircraft. Control of both aircraft was adequate for normal maneuvers.
For the 757, a real-time landing sequence under neuroelectric control
was filmed at NASA Ames Research Center (see on-line demos [4] and
[5]).

B. EMG-Based Numeric Keypad

We have also found that EMG signals from the arm can distinguish
typing of one key from another on a “virtual keyboard.” In this demon-

1We used overlapping moving averages of the rectified, unfiltered EMG
signal, sampled at either 500 (joystick task) or 2000 Hz (typing task). The
windows contained 128 points and overlapped preceding windows by 96
points. We tried other types of features such as autoregressive coefficients,
wavelets, and short-time Fourier transforms, but the moving averages provided
the most robust response for everyday use.
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