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Two rhesus monkeys were implanted with silicon arrays of 96
microelectrodes. Neural activity was recorded periodically over a
period of weeks to months. We have developed a method to determine
whether single units in two separate recording sessions represent the
same neuron. Pairwise cross-correlograms, the autocorrelogram,
waveform shape, and mean firing rate were used together as identi-
fying features of a neuron. When two units recorded on separate days
were compared using these features, their similarity scores tended to
be either high, indicating two recordings from the same neuron, or
low, indicating different neurons. Although these metrics are individ-
ually weak, together they produce a strong classifier. Some neurons
were recorded for �100 days. These monkeys performed a center-out
reaching task, and we found that the firing properties of chronically
recorded neurons were stable over time.

electrophysiology; chronic; movement; tuning

NEUROBIOLOGISTS WHO DO chronic extracellular recordings fre-
quently observe similar activity recorded on the same electrode
from day to day. Occasionally a single neuron will have some
unusual characteristic, such as a distinctive waveform or some
unusual and obvious firing property, that makes it clear that
this same neuron is present in multiple sessions. The possibility
that some neurons may be represented multiple times in a
series of recording sessions creates a problem and an oppor-
tunity. Separately recorded neurons may not actually represent
independent sources of data, so statistical tests that assume
each unit is an independent sample may not be valid. However,
if the same neuron could be identified as such across multiple
sessions, it would be possible to combine data and thereby
estimate the firing properties of that neuron with greater con-
fidence. A sufficiently accurate metric of identity would allow
all the recordings from a long series of sessions to be consid-
ered as a single population of neurons, with each identified unit
contributing to the population for some portion of time.

A number of authors have attempted to identify the same
neurons across recording sessions in a systematic way. The
identification problem amounts to deciding, for each compar-
ison between a sorted unit in one session and a sorted unit in
another session, whether they represent the same neuron. Some
authors have taken a qualitative approach, looking at waveform
and sometimes interspike interval distribution information to
identify examples with very stable characteristics (Chestek et
al. 2007; Ganguly and Carmena 2009; Greenberg and Wilson
2004; Jackson and Fetz 2007; Schmidt et al. 1976; Williams et

al. 1999). A few have developed classifiers that identify stable
neurons systematically (Dickey et al. 2009; Tolias et al. 2007),
but these methods are subject to severe tradeoffs between false
negatives and false positives when the classifier is unreliable.

We have developed a new metric of unit identity using
pairwise cross-correlograms between neurons in a simultane-
ously recorded population. It provides unit identification infor-
mation comparable to that based on wave shape. Combining
this metric with wave shape, autocorrelation shape, and mean
firing rate, we are able to clearly identify whether two sepa-
rately recorded units represent the same or different underlying
neurons. We followed the identities of neurons across multiple
sessions, in some cases for over 100 days.

The ability to track a large number of neurons across
sessions allows us to address a fundamental question: how
much do the tuning characteristics of neurons vary from day to
day? There is a divergence of opinion in the literature as to
whether the tuning characteristics of neurons are more or less
fixed (Chestek et al. 2007; Ganguly and Carmena 2009; Green-
berg and Wilson 2004) or whether they evolve continuously as
part of a dynamic network that is only stable at the ensemble
level (Carmena et al. 2005; Li et al. 2001; Rokni et al. 2007).
We use our classifier to follow the same neurons over periods
of weeks to months and find that the tuning of neurons to the
direction of movement is stable over time.

MATERIALS AND METHODS

Chronic microelectrode implant. Two male rhesus macaques were
implanted with 96-channel microelectrode arrays (Blackrock Micro-
systems; Maynard et al. 1997). Monkey C was implanted in February
of 2009 with a single array on the convexity of the motor cortex next
to the central sulcus, with the lateral edge of the array �2 mm medial
to the genu of the arcuate sulcus. The recordings reported here were
done in March-April of 2010 and consist of six sessions recorded once
a week on a day when the monkey did center-out movement tasks.
Monkey F was implanted in April of 2009 with two arrays. One array
was implanted in the same location as that of monkey C, targeting the
primary motor cortex arm area. The other array was implanted further
anterior and lateral, directly adjacent to the genu of the arcuate sulcus.
This array was intended to target ventral premotor cortex. The
recordings reported here were done in May 2009-March 2010. They
consist of 40 sessions spread irregularly over that period. All animal
procedures were approved by the institutional care and use committee
of the University of Pittsburgh.

All activity was sorted offline using OfflineSorter (Plexon). Of-
flineSorter allows a variety of features to be used to sort; we used
principal component distributions, peak/valley voltage, and voltage at
specific time points. We used different features depending on the
particular arrangement of waveforms on a given channel/day, and we
only sorted units that were sufficiently distinct from noise and from
each other. We identified 32–106 neurons per session from the
combined activity of both arrays in monkey F and 14–22 neurons per
session from the single array of monkey C.
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Behavioral task. Before implantation, each monkey was trained to
do a center-out reaching task in a 3D virtual environment. They
viewed a stereoscopic monitor (Dimension Technologies) that dis-
played a target sphere in its center and a cursor sphere that tracked the
movement of an infrared marker (Northern Digital) taped to the back
of the monkey’s hand. To receive a water reward, the monkey had to
complete a center-out movement. First, it had to move the cursor
sphere to contact a central target for a required period randomly
selected in each trial from 400–600 ms (monkey F) or 200–600 ms
(monkey C). The target sphere would then be moved to a peripheral
location selected randomly from a queue of 26 locations spread evenly
in a sphere with radius 66 mm (monkey F) or 83 mm (monkey C). The
monkey would then have to contact the peripheral target for 400–600
ms (monkey F) or 200–300 ms (monkey C). A failed trial resulted in
the target being requeued. Monkey F also performed out-center trials,
where the order of targets was reversed.

Tracking the same neurons. An implementation of this algorithm
has been posted to MATLAB Central as “Tracking neurons over
multiple days”, identification no. 30113.

Let us consider the problem of determining whether a particular
sorted unit in session 1 represents the same neuron as another sorted
unit in session 2, one or more days later. In these data, we need only
consider cases where the two units in question were recorded on the
same electrode. This is because the interelectrode spacing on the Utah
array is large (400 �m), so it is unlikely that one neuron will be
recognized on two different channels. If the two units do represent the
same neuron, there will be several indicators in the data that we can
quantify. We expect that the mean waveform shape, the autocorrela-
tion function, the mean firing rate, and the cross-correlograms with
other neurons will be similar. An example of these parameters for the
same neuron in two recording sessions is shown in Fig. 1. We quantify
the similarity of the wave shape in the same manner as Jackson and
Fetz (2007) as the peak value of the cross-correlogram between the
average waveform shape in session 1 vs. session 2. This allows for
changes in the overall size of the waveform and slight shifts in the
time domain, which are common. The resulting coefficient is Fisher
transformed (the arc tangent of the hypotenuse function) to make it
more normally distributed.

We estimate the autocorrelation function from 0 to 100 ms by
binning at 5-ms resolution, exactly as is shown in Fig. 1. That gives
us a 20-point vector for each session. To quantify the similarity of
these vectors, we take the Pearson correlation coefficient between
them. Again we Fisher transform to make the distribution more
normal. The similarity of the mean firing rates is computed simply as
the difference between the log of the mean rates. We take the log
because mean firing rates follow an approximately log-normal
distribution.

Because there are many neurons simultaneously recorded, there are
many pairwise cross-correlograms. Those shown in Fig. 1 were
chosen because they illustrate the strongest features for that neuron.
The correlograms are computed for a range of �0.5 s at 100-ms
resolution. We found that this range captured the largest and most
consistent features of the cross-correlograms, which tended to be
positive and negative triangular bumps with lags near zero. The
time-resolution represents a tradeoff between capturing finer features
of the correlogram and computation time. These macroscopic features
reflect common inputs rather than synaptic connections between
neurons. To summarize all the cross-correlograms as a single metric,
we first take Pearson correlations between presumed identical cross-
correlograms in the same manner as we do for the autocorrelation
functions. That means we are comparing one of the cross-correlo-
grams on the left in Fig. 1 to the one immediately to its right, resulting
in a single number for each pair. We Fisher transform those numbers
and take the mean, resulting in a combined pairwise cross-correlo-
gram similarity score.

The distributions of each of the four scores are shown in Fig. 2.
Because we have no data where we can be certain that two separate

recordings represent the same neuron, we show the distribution for
comparisons between recordings that are known to be different neu-
rons (recordings from separate channels, green line). We also show
several models of the same neuron distribution. The data points
classified as same neuron are shown as a black histogram. The
Gaussian computed by the expectation-maximization procedure (de-
scribed below) is shown in blue and tends to match the black
histograms, which is not surprising because they were classified as
same neuron using that Gaussian as a model. We also show the
synthetic data distribution in red, where we repeatedly classified the
data using only three scores (detailed below) so that we could study
the score we left out without invoking circular logic.

All four scores were combined with a quadratic classifier that
computes an optimal decision boundary under the assumption that the
underlying data can be modeled as a mixture of multivariate Gauss-
ians. Ordinarily a training data set is used to fit these Gaussians. In our
case, we have a great deal of known different-neuron data (compar-
isons across different channels, which cannot be the same neuron).
However, we do not have any known same-neuron data. Therefore we
used partially supervised expectation-maximization to fit a mixture of
Gaussian models (Come et al. 2009; Lanquillon 2000). Our data set
includes many points with known labels (cross-channel comparisons),

Fig. 1. The same neuron has been detected in 2 recording sessions 3 days apart.
There are various indicators that this has happened. The cross-correlograms are
between the target neuron and various other neurons that are present in both
sessions. To line them up as we did above, we need to already know which
neurons survived from session 1 to session 2. This problem is solved by an
iterative procedure as described in Tracking the same neurons.
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whereas the remainder has mixed labels (within-channel, subsequent-
day comparisons that might be the same neuron). Because the differ-
ent-neuron data set is so large, it essentially dictates the shape of one
of the Gaussians, and the other Gaussian converges very quickly onto
a second cluster of points that lie away from the different-neuron
distribution, putatively corresponding to the same-neuron compari-
sons. The location of the decision boundary and the contours of the
two Gaussians are shown in Fig. 3, and the parameters of the Gauss-
ians are summarized in Table 1. The decision boundary of the
classifier is calibrated to produces a 5% error rate in the known
different-neuron distribution. This may seem high but it is mitigated
by the types of potential errors that occur in real recordings. Figure 4
illustrates the types of possible errors, which depend on how many
neurons are present on a channel and how they emerge and disappear
over time. Drop errors occur when the same neuron on two days is
classified as two different neurons. Switch errors occur when the
classifier switches the labels between two neurons, but at least one of
them continues between days. This error happens rarely because the
classifier will always label the session 2 neurons according to which
session 1 neuron they fit best, so to produce a switch it essentially has
to produce two errors simultaneously. When there are multiple sur-
viving neurons, we consider all possible assignments of labels and
choose the one that is most likely according to the Gaussian model of
the similarity score. Decoy errors occur when one neuron disappears
at the same time another appears, and they are classified as the same
neuron. The 5% error rate that we use as a target applies only to
instances where it is possible to make a decoy error, which are in-
herently unlikely.

When we use cross-correlograms to assess the identity of many
neurons across two sessions, changes in labeling across days need to
be considered. For instance, two neurons sorted on channel 1 might be
labeled “unit 1a” and “unit 1b.” On the next day, their labels may be

exchanged by the investigator doing spike sorting, or unit 1a may
have disappeared and unit 1b is now labeled 1a. If we then wish to
assess whether some other unit, for example unit 2a, is the same in
session 1 and session 2, there is a problem with the cross-correlogram
similarity metric. The cross-correlogram between unit 2a and unit 1a
in session 1 will be different than in session 2, even if unit 2a is
actually still the same neuron. We solved this problem with an
iterative procedure, making an initial assumption that, wherever the
unit labels are the same between session 1 and session 2, they
represent the same neuron. We then used our four-score classifier to
identify which units putatively corresponded to the same neurons
from session to session. This set of identities was then used to relabel
all the units, and classification was performed again, under the
assumption that the number of labeling errors will be reduced with
each iteration. If this assumption is correct, the labeling will tend to
converge, which it does after a few iterations. We found that �99%
of the unknown identities did not change after the first iteration.

The classification procedure we have described so far determines
whether each recorded unit in session 1 represents the same neuron
as a unit in session 2. We tracked the same neurons across many
sessions by repeatedly applying this classifier to adjacent pairs of
recordings. When following neurons across many sessions, it is
theoretically possible that better choices could be made by consider-
ing the entire data set at once and employing a graph-cut algorithm.
We chose not to pursue this approach because the “soft” assignment
(probability same/probability different) of the Gaussian model was so
bimodally distributed that almost any decision procedure would pro-

Fig. 3. Combining multiple similarity scores with a quadratic classifier. Each
point represents a comparison between 2 units on 2 different days. We
computed 4 similarity scores as described in Tracking the same neurons. These
plots show projections of 2 scores at a time. Points are labeled according to
whether they were classified as the same neuron. The same neuron/different
neuron Gaussians estimated from the data are shown as contour plots. A
2-dimensional slice of the decision boundary that is used by the classifier is
shown as a black line. The contours correspond to 25%, 50%, 75%, and 95%
of the distribution. There are 6 unique combinations that could be shown; we
chose the pairwise/wave scatterplot because they are the 2 most informative
features, and we chose the mean rate/wave scatterplot because it illustrates the
unique characteristics of the change-in-mean-rate feature.

Fig. 2. Distributions for each of the 4 types of similarity score for both
monkeys. The y-axis of each plot is in units of probability density (the
proportion of observations found in each bin, divided by the width of the bin).
The x-axis indicates similarity score: correlation coefficient for X-corr, wave-
form, and autocorr; change in log mean rate for the bottom panel. The green
line represents the distribution for comparisons between recordings from
different channels, which are guaranteed to be different neurons. The black
area represents similarity scores from the same channel on subsequent days
that were classified by the algorithm as the same neuron. The red line
represents the scores described in Synthetic data, where we ran the algorithm
using only 3 of the scores so that we could validate the 4th score without
creating circular logic. The blue line shows the Gaussian function representing
the same-neuron distribution in the expectation-maximization procedure de-
scribed in Tracking the same neurons.
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duce the same answers. There is a related concern that some neurons
may be recorded for a few sessions and then become undetectable for
some period of time, only to return later. Such a neuron would be
given two labels, one for each period it was continuously recorded.
We chose not to attempt to correct such situations because the most
important metric of similarity (cross-correlations) works best when
there are many identical neurons present in both sessions, which we
can use to construct comparable cross-correlograms (Fig. 1). Also,
attempting to link such segments dramatically increases the potential
for errors because a long series of recordings will contain many
segments of recording that could be linked together erroneously.

Synthetic data. Because we could not test our algorithm with data
where the identity of neurons across days is known, we constructed a
synthetic data set by using the actual data to capture the variability in
these metrics across separate recording sessions. There are four
similarity scores: pairwise cross-correlation, wave shape, autocorre-
lation similarity, and mean firing rate. We computed a synthetic
true-positive data set for one score at a time by ignoring that score and
using only the other three to classify the entire data set. The points
classified as same-neuron can then be used as a synthetic same-neuron
distribution for the score we left out. To avoid introducing a lot of
errors, we defined a conservative three-score boundary that would
drop 25% of the points classified as positives by the full four-score

classifier. To understand how this works, let us consider a simplified
example where we only have the two scores shown in Fig. 3, top left.
We are going to use just the pairwise similarity (x-axis) to classify a
set of points as positive. That means we will draw a vertical line and
classify everything to the right of it as positive. We can then use these
points as a true-positive data set for the wave similarity score.

By using this technique four times, we create four different pools
of synthetic true-positive scores. We then recombine a random value
from each pool to create artificial data points. With these synthetic
true-positive points and the known-negative distribution (neurons on
separate channels), we have a complete data set where the ground
truth is known. This technique for creating synthetic data creates a
specific kind of bias attributable to the fact that there is some
correlation between the different scores, as can be seen in the slight tilt
of the red cloud in Fig. 3. When we use three scores to generate a
known same-neuron distribution for the fourth, we throw away 25%
of the positive category that were worst with respect to the three
scores. Even though we did not consider the fourth score in deciding
what to throw away, because of the presence of correlation, we end up
with a slightly nonrepresentative set of points with respect to the
fourth score. On average, this technique biases the distribution of
fourth metric 0.1 standard deviation upward.

Long-term accuracy. To extrapolate the various error rates to
performance in a long series of recordings, we need to know how
many neurons disappear from our electrodes each day, how likely we
are to record n neurons on the same channel, and how often the decoy
error scenario occurs (Fig. 4). These parameters were estimated using
the labels produced by the full four-score classifier. Using the results
in this way creates a bias with respect to decoy errors; if the classifier
frequently makes an error when presented with a decoy neuron, then
we will tend to underestimate how often decoy scenarios actually
occur because each of these errors will result in one less decoy
reported in the data. We set the decision boundary of the classifier to
target a 5% decoy error rate, as described in Tracking the same
neurons. Therefore, we assume that decoy scenarios actually occur
5% more often than they appear in the data. We modeled the turnover
rate (the proportion of the population replaced daily) as an exponential
decay that became smaller as a neuron was recorded for a longer
duration, which corresponded to tendency in the data for a core group
of stable neurons to persist from day to day, coexisting with another
group of more marginal neurons that turned over frequently. The
estimates for monkeys F and C are turnover rate (for the average gap
between sessions), 15%/35%; additional neurons per channel, 0.4/0.4;
and percent of neurons ending in a decoy-prone situation, 11%/10%.
We used these parameters along with the drop, decoy, and switch rates
from synthetic data to extrapolate the performance of the classifier
over time. In RESULTS we use the terms “false negative” and “false
positive” in the context of long-term data, defining the false positive
rate as the proportion of labels that exist at a given time that are on the

Table 1. Means and covariances of the Gaussian fits to the same-neuron and different-neuron distributions, shown as contour plots in
Figure 3

Monkey F Monkey C

Covariance Matrix Mean Covariance Matrix Mean

Same-neuron (red) cluster

Pairwise X-Corr 0.19 0.06 0.19 0.00 1.70 0.10 0.01 0.11 �0.02 1.61
Waveform 0.52 0.05 0.00 3.85 0.25 �0.03 �0.01 3.26
Autocorrelation 0.72 0.00 2.72 0.72 �0.02 2.56
Mean Rate 0.08 0.00 0.19 0.07

Different-neuron (blue) cluster
Pairwise X-Corr 0.15 0.00 0.01 0.00 0.01 0.17 0.01 0.01 �0.01 0.03
Waveform 0.36 0.05 0.00 1.90 0.40 0.08 �0.04 1.78
Autocorrelation 0.67 0.00 1.06 0.32 �0.01 1.26
Mean Rate 2.74 0.02 1.57 0.08

Fig. 4. Types of errors we can make while trying to label the same neurons over
multiple sessions. Drop errors occur when the target neuron continues but the
classifier fails to positively identify it across one of the gaps (indicated by the X).
The original label is then a false negative until the target neuron actually disap-
pears. Decoy errors occur when the target neuron disappears at the same time as
a new neuron appears and the classifier mistakenly labels the new neuron as being
the same as the old one. The label is then a false positive until the new neuron
disappears. Switch errors occur when a distracter neuron is present simultaneously
with the target and the classifier mistakenly switches the label to the distracter.
Switch errors are the least likely because they essentially require the classifier to
simultaneously make a drop and a decoy error.
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wrong neuron. The false-negative rate was defined as the number of
labels no longer in existence even though their target neuron still is,
divided by the number of labels currently in existence.

Preferred directions. We estimated the preferred direction of each
neuron on each day it was recorded by fitting a linear model:
� � �0 � �xx � �yy � �zz, where � is the firing rate of the cell, x,
y, and z are the target direction, and the � terms are the parameters
of the model. The preferred direction (PD) of the cell is the vector
��x, �y, �z�. We generated a measurement error distribution for this
cell by bootstrap resampling the residuals of the fit on a per-trial basis.
This method will incorporate the variability in firing rates that is
caused by variability in kinematics. In this model, nonlinearity in the
tuning function is considered part of the noise term, so the model will
tend to slightly overestimate the amount of measurement error. We
will need this measurement error cloud when we make two observa-
tions of the PD of the same neuron so that we can associate a level of
uncertainty with our estimate of the angle between observations.
Because these PDs are three-dimensional, the effect of measurement
error is somewhat complicated. If two PDs are 90° apart, the mea-
surement error is as likely to make the angle smaller as bigger. If they
are more than 90° apart, measurement error will tend to bring the
observations closer together. We solve this problem by calculating a
“pure measurement error” distribution for each comparison, rotating
the measurement error cloud of PD 2 so that its mean matches the
mean of the PD 1 cloud and taking repeated samples from each
distribution to compute the angle between them. In RESULTS, we will
test two null hypotheses about the evolution of PDs over time: that
they are unchanging, or that they change in a random walk. To test the
no-change hypothesis, for each case where a neuron was observed
twice, we computed a quantile for the observed change in PD,
indicating where it lies in the appropriate measurement error distri-
bution. If the true PD is unchanging, these quantiles should be
uniformly distributed. To test the random-walk hypothesis, we as-
sumed that the real change in PD could be modeled as a step each day
in a random direction with a Gaussian-distributed step size. The step
size was estimated using comparisons between adjacent sessions (only
available in monkey F), taking into consideration the fact that ob-
served PD change equals real change plus measurement error. We
then generated a random-walk distribution numerically and added the
appropriate measurement error distribution to it. Again, we compared
the observed change in PD to the numerically generated distribution
and computed a quantile. The uniformity of these quantiles was
assessed with a K-S test.

RESULTS

Classification accuracy. Figure 2 shows the separation of
each individual score into a high-similarity and low-similarity
group. Of particular note is the red line, representing the
synthetic data distribution. We generated this distribution for
each score using only the other three scores. It is therefore our
most valid estimate of the true shape of the same-neuron
distribution for each score. The accuracy of our algorithm is
assessed in several ways, each of which is subject to different
kinds of bias. The simplest approach is to generate a data set
where the ground truth is known by splitting each recording
session in half and comparing the two halves as though they
were separate sessions. This results in a high-similarity cluster
from comparisons between the same neuron in the first and
second half of the data and a low-similarity cluster from
comparisons between different neurons. Compared with multi-
day data, the high-similarity cluster is likely to be more tightly
distributed and further from the low-similarity cluster because
the similarity metrics we are using are likely to change less
between the first and second half of a single session than across

the interval between sessions. For this data set we changed the
initial conditions of the iterative identification procedure by
randomizing the unit labels so that the classifier was not
initialized with the correct answer. Testing our classification
algorithm using split session data gave zero errors in monkey C
and a 0.005% overall error rate in monkey F.

Without knowing the ground truth, there are some ways to
estimate the error rates in the real data. 1) Estimate the decoy
error rate using comparisons across separate electrodes, which
can’t be the same neuron. 2) Estimate the drop rate by mod-
eling the data as a mixture of Gaussians. 3) Estimate the drop
rate with synthetic data.

We use method 1 to set the classification boundary with a
target decoy error rate of 5%. Where we set the classification
boundary amounts to a tradeoff between drop errors and switch
or decoy errors. A 5% target for the decoy rate heavily favors
the drop rate, which ends up �1%. The decoy error rate in a
real data set will be the product of 5% and the rate at which the
decoy error scenario occurs (see Fig. 4), which is rare.

For method 2, we used the Gaussian models shown in Fig. 3.
For every same-channel comparison classified as a negative,
we estimated the probability that it was actually an unusually
inconsistent single neuron using the density of the same-neuron
and different-neuron Gaussians. By taking the mean of these
probabilities we estimated the overall drop rate (Table 2).

For method 3, we constructed a synthetic data set as de-
scribed in MATERIALS AND METHODS, applied our classifier, and
calculated the drop rate (Table 2). The accuracy results are
broadly similar to method 2. Pairwise cross-correlograms are
the most important metric, followed by waveform, autocorre-
lation, then mean rate. We then extrapolated the synthetic data
error rates to generate the long-term false-negative and false-
positive scores shown in Fig. 5 (see Long-term accuracy). For
comparison, we implemented a similar algorithm that uses the
same wave shape score as ours and a similar autocorrelation
score (Dickey et al. 2009). The long-term false-positive rate of
the Dickey et al. algorithm was different than they reported
because of differences in the way we tested the classifiers.
Dickey et al. (2009) assessed long-term false positives by
constructing a synthetic data set where each day a neuron from
a different channel was used. To get a false positive after n
days, the classifier would need to make n errors in a row. We
assessed long-term error rates by estimating the various error
rates for single comparisons (Table 2), then estimating how
often various error scenarios would occur (Fig. 4). Using this
approach, we find error rates tend to increase over longer
periods of recording. Figure 5 shows performance for both a
conservative threshold, which minimizes false positives, and
an aggressive threshold, which minimizes false negatives. The
aggressive threshold is similar to the one used in Dickey et al.
(2009), targeting a �25% false-positive rate. The conservative
threshold targets 5%. We used the conservative threshold for
all classification in the remainder of this paper.

Our classification algorithm identified 760 unique neurons in
monkey F and 35 in monkey C. The lengths of observation for
these neurons are shown in Fig. 6. Most neurons were recorded
for less than 30 days, but some in monkey F were recorded for
over 100.

Tuning parameters. With the same neurons identified over a
long-term data set, we can evaluate the stability of the direc-
tional tuning of these cells over time. Examples of tuning
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profiles for neurons that were tracked for a particularly long
time are shown in Fig. 7. These examples show low variability
in their tuning function between sessions. For each day that
each neuron was recorded, we fitted a cosine tuning model
describing a linear relationship between the direction of move-
ment and the firing rate of one cell (see Preferred directions).
Figure 8 shows histograms for the PD variability between two
or more sessions, for all recorded cells. It was necessary to
exclude units with weak or inconsistent modulation because
changes in their PDs reflect more measurement error than real
change. We assessed measurement error by bootstrapping the
residuals of the cosine tuning fit (see Preferred directions) and
excluded all comparisons where the uncertainty in our estimate

of PD change was greater than 10°. This excluded 49% of the
population in monkey F and 17% of the population in monkey
C. The excluded set is based on the measurement error, not
change in PD, so we are not limiting the potential for real
variation in the PD across sessions; a neuron with a strong
preferred direction in one session could have an equally strong
but altered preferred direction in the next session.

Figure 8 shows that PD variability is low, generally � 30°.
In assessing these changes in PD, we consider three hypothe-
ses: 1) The PD is static, and all variation is due to measurement
error. 2) The PD experiences slight real variation, which
accumulates over time to create a random walk. 3) The PD

Table 2. Drop rate table

Monkey F Monkey C

Pair Wave Auto Rate Not Pair Wave Auto Rate Not

Gaussian Model
Pairwise X-Corr 0.04 0.01 0.04 0.02 0.12 �0.01 �0.01 0.02 �0.01 0.16
Waveform 0.22 0.13 0.16 0.02 0.31 0.13 0.24 �0.01
Autocorrelation 0.40 0.37 �0.01 0.35 0.35 �0.01
Mean Rate 0.59 �0.01 0.53 �0.01

All <0.01 <0.01

Synthetic Data

Pairwise X-Corr 0.01 �0.01 0.01 �0.01 0.02 �0.01 �0.01 �0.01 0.01 0.08
Waveform 0.09 0.03 0.04 0.00 0.23 0.07 0.15 �0.01
Autocorrelation 0.23 0.20 �0.01 0.31 0.31 �0.01
Mean Rate 0.68 �0.01 0.73 �0.01

All <0.01 <0.01

Each entry indicates the drop rate for a quadratic classifier based on 1 or more scores. We assessed drop rate by modeling the data as a mixture of Gaussians
(method 2 in the text) or using synthetic data (method 3 in the text). Performance is shown for each metric of identity, each combination of 2, and for the full
classifier based on all 4 combined. Single-metric performance is on the diagonal. 2-Metric performance is indicated by the combination of row and column labels.
The “Not” column indicates the performance of a classifier with the 3 scores other than the row label. The decoy rate was always 5% (method 1 in the text) due
to the way we set the classification boundary.

Fig. 5. Long-term accuracy in a synthetic data set for our method and a similar
method with 2 classifiers (Dickey et al. 2009). Here we define accuracy in terms
of whether after x days a label is still correct. False negatives (FN) are cases where
the label is gone but the target neuron is still around. False positives (FP) are cases
where the label is on the wrong neuron, whether or not the original target is still
present. In the top row, the classification boundary was set conservatively, target-
ing a 5% decoy rate. In the bottom row, the classification boundary was set
aggressively as described in Dickey et al. (2009). The figures on the right have a
significantly higher false-positive rate because they experience a nonnegligible
number of switch errors, which accumulate rapidly. False-positive errors tend to be
more damaging in studies that examine the properties of neurons over time, but a
high false-negative rate will be inefficient because many neurons will not be
tracked as long as they could be.

Fig. 6. Observation lengths for recorded neurons. X-axis indicates recording
duration for a single neuron. Y-axis indicates the number of neurons that were
recorded that long, divided by the number of neurons that could have been
recorded that long. We identified 760 unique neurons in monkey F out of 2892
sorted units recorded over 40 sessions. We identified 35 unique neurons in
monkey C out of 104 sorted units recorded over 6 sessions. Monkey C had a
smaller but more stable population.
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experiences slight real variation, which accumulates, but it is
tethered to an underlying intrinsic value that does not change.

Hypothesis 1: the PD is static. If the true change in PD is
always zero, then the observed changes should follow the
distribution of measurement error that we computed by boot-

strapping the residuals of the cosine tuning fit. We can compare
each observed change in PD to the measurement error distri-
bution described in MATERIALS AND METHODS and compute a
quantile. If the observed changes were due only to measure-
ment error, these quantiles would be uniformly distributed.
Using a K-S test, we rejected this hypothesis (P � .01).

Hypotheses 2: the PD experiences real variation that accu-
mulates over time. We extrapolated a series of distributions of
PD changes from the 1-day changes by assuming that PD
change represented a random walk plus measurement error, as
described in MATERIALS AND METHODS. This distribution was
tested against the data with a K-S test in the same way we
assessed hypothesis 1, and again it is a bad fit (P � .01). This
rejects hypothesis 2.

Figure 9 shows a scatterplot of the relationship between obser-
vation interval and PD difference. The expected-value lines asso-
ciated with hypotheses 1 and 2 are shown and are above the mean
of the data, visually confirming the results of the K-S test. This
leaves us to conclude that, although there is real variation in PDs,
they are tethered to underlying intrinsic PDs.

DISCUSSION

This report takes a series of extracellularly recorded popu-
lations and attempts to identify in every case whether an earlier
session/later session pair represents the same neuron. Most past

Fig. 9. The relationship between observation interval (x- axis) and difference
in PD (y-axis). This is the same data as Fig. 8, scattered out over time. Each
point indicates that 2 observations were made of the PD of the same neuron x
days apart, and the angle between the 2 observations was y degrees. For
monkey F, we summarized dense regions of the scatter plot with a gray line
indicating 95% of distribution and a black line indicating 66%. Red line shows
the expected average difference in PD if all change is caused by measurement
error. Blue line indicates a hypothetical trend assuming that the changes in PD
accumulate over time (see Preferred directions for details). Green line shows
a simple nonlinear function fit to the data, y � b1 � b2·exp(b3·x). Although
there is a limited amount of accumulation, it is significantly below the
distribution associated with the blue line, indicating that there is an intrinsic
unchanging preferred direction for each cell.

Fig. 7. Directional tuning profile across multiple sessions, 2 neurons from each
monkey. The mean firing rate for each target is displayed in the direction of
that target. There are 26 targets in 3D space; here we see x–y and z–y slices.
Firing rate profiles from each single neuron are rendered simultaneously for all
sessions where that cell was recorded. Arrows indicate preferred directions
(PDs) from model fit. Scale bars indicate number of spikes per reach. The
neurons shown are the first 2 neurons from each monkey that were recorded for
at least 14 days with a mean preferred direction measurement error of �5°.
Low measurement error does not necessarily limit the amount of variation in
PD across sessions.

Fig. 8. Observed differences in PD of single neurons across sessions. PD is the
vector indicating the target that would theoretically elicit the maximal firing
rate from the neuron according to a cosine-tuning model fitted from the data.
X-axis indicates the absolute difference in PD. Y-axis indicates histogram bin
counts. The histogram includes the angle between every possible pair of 2
observations of the PD of the same neuron. Comparisons are only included
where the uncertainty in our estimate is �10° according to the bootstrap
distributions described in Preferred directions. This does not constrain the
potential variation in PD across sessions. Note that, in 3 dimensions, 2 PD
vectors chosen at random are much more likely to have an angle difference of
around 90° than around 0°.
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work on this topic has attempted to identify a minority of stable
cells that can be reliably tracked, leaving the rest of the
population in the category of “uncertain”. The four features we
used are individually weak classifiers, but, because they rep-
resent independent sources of information, they can be com-
bined into a strong classifier. For example, mean firing rates
can indicate that two units are definitely not the same neuron,
but they can never give high confidence that they are the same.
The mean firing rate of a single neuron tends to be consistent
from day to day, but the expected difference in mean rate
between two different neurons is also zero (Fig. 3). Thus, if
two units on two days have a very different mean rate, then
they are almost certainly different neurons; but, if they have a
similar mean rate, we cannot be certain that they are the same
neuron. By itself, mean firing rate would be an inaccurate way
to identify neurons, but when combined with other metrics it
contributes useful information. With four different metrics of
similarity, we can produce a very strong classifier that can
follow neuron identity throughout entire population, not just
the largest units with the most consistent characteristics.

Estimating identity for the entire data set not only allows us
to take full advantage of the data we have collected, but also it
will allow us to treat the entire chronic series as a single data
set for the purpose of network analysis. The analysis of
multi-observation data, where different subsets of a network
are observed in overlapping intervals of time, has been a topic
of growing interest (Lambiotte et al. 2009; Mucha et al. 2010).
When using this algorithm in the context of network analysis,
it is important to keep in mind that units that possess no
functional connectivity may be less trackable because of the
lack of features in their cross-correlograms. Setting aside these
future directions, the most obvious immediate application of a
unit identification algorithm is to determine whether the firing
properties of neurons change over time. Other authors have
speculated on the possible role of tuning changes, especially
preferred direction changes, in the underlying motor control
algorithms of the brain (Carmena et al. 2005; Rokni et al.
2007). It has been observed before that changes in PD across
two adjacent sessions tend to be small (Chestek et al. 2007).
Our results confirm these small changes and demonstrate that,
over a long series, they do not accumulate into large changes.
Instead, the PDs of these neurons are tethered to an unchanging
intrinsic value.

Unobserved kinematic parameters may account for some or
all of the variability in PDs that we see. Because there are no
buttons or manipulandum that involve the hand in our task, and
the reaches are performed and tracked in three-dimensional
space, the main unobserved kinematic parameters are subtle
changes in wrist posture and the way the monkey sits each day.
Chestek et al. (2007) showed that the variability in PD within
a single day was at least partially attributable to subtle changes
in kinematics. It is likely that such subtle changes may account
for some of the PD variability in our data.

The arrays used in these experiments are physically able to
record the same neurons for long periods. Even though the shape
of waveforms will change from day to day (especially in magni-
tude), we have shown that it is possible to identify the same
neurons reliably. Applying this technique to other types of arrays
that are less physically stable might produce different results.
Also, the performance of Utah arrays in this respect is not com-
pletely consistent. It has been our experience that the kind of

long-term stability we identified in these data usually emerges
after an array has been implanted for several months. One reason
for recording instability is physical motion of the array during
accelerations of the monkey’s head (Santhanam et al. 2007). Over
long periods of implantation, Utah arrays accumulate scar tissue,
especially at the surface of the cortex (Rousche and Normann
1998). This scar may serve to physically stabilize the array. Our
monkey C had an older array (12–13 mo vs. 1–11 mo) and more
stable recordings. If tracking the same neurons over long periods
is an important aspect of an experiment, it may be prudent to plan
data collection for such experiments several months after elec-
trode implantation.

The monkeys in this data set performed straightforward arm-
movement tasks in the data we have analyzed. The sessions used
for unit identification and center-out analysis represent only part
of the experiments that were conducted over the time period they
span. On other days the monkeys performed different tasks, but
none were specifically designed to elicit changes in preferred
direction. Clearly we would like to know whether an experimental
paradigm designed to produce changes in preferred direction
(Jarosiewicz et al. 2008; Li et al. 2001) might produce a long-term
trend when applied repeatedly to the same neurons. That issue will
have to await future experiments.
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